

Irrigation Systems and Energy Efficiency

SURFACE IRRIGATION EFFICIENCY WORKSHOP UC Kearney Agricultural Center - June 3rd, 2016

Daniele Zaccaria, Ph.D.

Agricultural Water Management Specialist, UC Cooperative Extension Ph.: (530) 219-7502 Email: <u>dzaccaria@ucdavis.edu</u>

OBJECTIVES

- 1) Background information on Irrigation Systems in California
- 2) Review Pumping Efficiency Concepts
- 3) Considerations about Different Energy Sources
- 4) Some Sample Calculations

Economic Productivity of Water 2000-2010 (DWR, 2013) 680 \$/ac-ft => 910 \$/ac-ft (34%)

(resulting from more productive crops & more efficient irrigation)

Economic Productivity of Water per crop (\$/ac-ft)

HOW ABOUT THE DROUGHT IMPACTS?

Source: Faunt, C.C., ed., (2009) as cited in Christian-Smith (2011)

California's farmers in 2014-2015 reacted quickly, by pumping enough ground water to stay competitive

~ 5% prices increase in 2013-2015

Power and Energy terms

Power $(kW, Hp) = Head \times Flowrate = H \times Q$

Energy (kWh) = Head x Volume Water Lifted = Power x Operating Time

Pumping Plant Efficiency

is the overall energy efficiency of the pump and motor considered together

 $E_{PUMP} = \frac{Power \ Out}{Power \ In} = \frac{Water \ Horsepower \ (WHP)}{Electric \ Horsepower \ (EHP)} = \frac{output \ power \ provided \ to \ water \ by \ the \ pump}{input \ power \ required \ at \ pump \ shaft}$

The Water Horsepower (WHP) is given by:

$$WHP = \frac{TDH \ (ft) * Q \ (gpm)}{3960}$$

The Energy Horsepower (EHP) is given by:

$$EHP = \frac{TDH (ft) * Q (gpm)}{3960 * E_{PUMP}(\%)} = \frac{WHP}{E_{PUMP} (\%)}$$

Common Causes of Poor Pumping Plant Performance

□ Wear (sand) Improperly matched pump Changed pumping conditions o Irrigation system changes o Drop in ground water levels Clogged impeller Poor suction conditions Throttling the pump

Usually the E_{PUMP} is provided by the pump manufacturer. However, it should be evaluated every several years

- 1. A good quality pressure gauge (oil-filled) mounted on the discharge side of the pump
- Flow meter installed at least 5-8 pipe diameters downstream the pump, (or a 5-gallon bucket + garden hose)
- 3. A stopwatch and a calculator

STEP 1 – Find the Total Dynamic Head

STEP 2 – Find the Flow Rate in GPM

If your system has a flow meter, read the gallons per minute (gpm). If the meter reads in cubic feet per second (cfs), multiply cfs times 448.8 to get gpm.

. gpm

STEP 3 – Find the Input kW and Energy Horsepower (EHP)

Seconds the disk takes to make 10 revolutions

STEP 4 – Find the Water Horsepower (WHP)

STEP 5 – Determine the Pumping Plant Efficiency

Expected Pumping Plant Efficiency

Rated Motor Size (HP)	Expected Efficiency (%)
3 to 5	66%
7.5 to 10	68%
15 to 30	69%
40 to 60	72%
75+	75%
Note: These efficiencies are for older pumps in excellent con- dition. New pumps and used pumps under mild conditions or improved design will have higher efficiencies.	

Recommended Corrective Actions

- Epump greater than 60% no corrective action
- ☺ 55% to 60% consider adjusting impeller
- So% to 55% consider adjusting impeller; consider repairing or replacing pump if adjustment has no effect
- B Less than 50% consider repairing or replacing pump

Efficiencies of Standard and Energy-efficient Electric Motors

Horsepower	Standard	Energy
		Efficient
10	86.5	91.7
20	86.5	93.0
50	90.2	94.5
75	90.2	95.0
100	91.7	95.8
125	91.7	96.2

COMPARISONS BETWEEN DIFFERENT ENERGY SOURCES

FUEL SOURCE	PUMP OUTPUT	RELATIVE OUTPUT
ELECTRICITY	0.885 whp-hr/kWh	1
NATURAL GAS (925 BTU)	61.7 whp-hr/MCF	69.72 times as Electricity
NATURAL GAS (1000 BTU)	66.7 whp-hr/MCF	75.36 times as Electricity
DIESEL	12.50 whp-hr/gal	14.2 times as Electricity
PROPANE	6.89 whp-hr/gal	7.70 times as Electricity

1 MCF of Natural Gas (925 BTU) produces 69.72 times the water horsepower as 1 kW of Electricity.

1 gal of Diesel produces 14.2 times the water horsepower as 1 kWh of Electricity.

Cost of Electricity per Agricultural Use in California (PG&E, 2016)

	RATE A (< 35 HP)	RATE B (> 35 HP)
SUMMER	0.278 \$/kWh	0.236 \$/kWh
WINTER	0.213 \$/kWh	0.182 \$/kWh

Assuming an average cost of electricity of \$0.227 per kWh, we could afford to pay: \$15.82 per MCF of Natural Gas (925 BTU) \$17.10 per MCF of Natural Gas (1000 BTU) \$3.22 per gal of Diesel \$1.75 per gal of Propane

ENERGY REQUIRED TO LIFT THE WATER OF 1 FOOT

- 1 Acre-Foot Water = 43,560 Cubic Feet
- 1 Cubic Foot = 62.4 pounds
- Energy required for 1 ft = 43,560 ft³ x 62.40 lbs/ft³ = 2,718,144 ft-lbs
- 1 hp = 33,000 ft-lbs/min
- 1 hp-hr = 33,000 ft-lbs/min x 60 min/hr = 1,980,000 ft-lbs/hr

Energy needed to pump 1 ac-ft of water at head of 1 foot 2,718,144 ft-lbs/1,980,000 ft-lbs/whp-hr = **1,373 whp-hr/ac-ft per foot of lift**

ELECTRICITY
$$\frac{1.373 whp - hr / ac - ft}{0.885 whp - hr / kWh} = 1.55 kWh / ac - ft per foot of lift$$

NATURAL GAS (925 BTU)

$$\frac{1.373 whp - hr / ac - ft}{61.7 whp - hr / kWh} = 0.022 MCF / ac - ft per foot of lift$$

NATURAL GAS (1000 BTU)

$$\frac{1.373 \text{ whp} - hr / ac - ft}{66.7 \text{ whp} - hr / kWh} = 0.020 \text{ MCF} / ac - ft \text{ per foot of lift}$$

DIESEL

$$\frac{1.373 whp - hr / ac - ft}{12.50 whp - hr / kWh} = 0.10 gal / ac - ft per foot of lift$$

PROPANE

$$\frac{1.373 \text{ whp} - hr / ac - ft}{12.50 \text{ whp} - hr / kWh} = 0.20 \text{ gal} / ac - ft \text{ per foot of lift}$$

Multiply these numbers by the total head in ft to obtain the **AMOUNT OF FUEL NECESSARY PER ACRE-FT OF WATER FOR A PARTICULAR LIFT**

Multiply these numbers by the total acre-ft of water to fulfil the crop water requirements (+ leaching, flushing, etc.) to obtain the **TOTAL FUEL NECESSARY TO PUMP WATER (kWh, gal, MCF, etc.)**

If we multiply the total fuel required by the unit fuel price, we obtain the **TOTAL COST TO PUMP WATER (\$\$)**

EXAMPLE 1

Alfalfa ET = 50 inches = 4.2 ft of water per season (SJV)

Area = 130 acres

Irrigation methods: Sprinkler (50 psi) Vs. SDI (20 psi)

Lift of water = 50 ft (from well to ground)

TDH_{SPRINKLER}: 50 ft + 50 psi x 2.31 ft/psi = 165 ft TDH_{SDI}: 50 ft + 20 psi x 2.31 ft/psi = 96 ft Total ac-ft _{SPRINKLER} = 4.2/0.75 = 5.6 ac-ft Total ac-ft _{SDI} = 4.2/0.90 = 4.6 ac-ft Diesel : 0.10 gal/ac-ft per foot of lift

System	Eff. _A
Gravity	0.70
Drip & SDI	0.90
Micro-sprinkler	0.80
Sprinkler	0.75

Sprinkler: 130 ac x 5.6 ac-ft x 165 ft x 0.10 gal/ac-ft = 12,012 gal SDI = 130 ac x 4.6 ac-ft x 96 ft x 0.10 gal/ac-ft = 5,740 gal Difference in fuel amount = 12,012 - 5,740 = 6,272 gal Cost of Diesel = \$ 2.6 per gallon Total saving = 6,272 gal x \$2.6/gal = \$16,307

EXAMPLE 2

Almond ET = 48 inches = 4.0 ft of water per season (SJV)

Area = 130 acres

Irrigation methods: Surface Irr. (5 psi) Vs. Drip (20 psi)

Lift of water = 150 ft (from well to ground)

TDH_{SURFACE}: 150 ft + 5 psi x 2.31 ft/psi = 161 ft TDH_{DI}: 150 ft + 20 psi x 2.31 ft/psi = 196 ft Total ac-ft _{SURFACE} = 4.0/0.70 = 5.7 ac-ft Total ac-ft _{DI} = 4.0/0.90 = 4.4 ac-ft Natural Gas₉₂₅ : 0.022 MCF/ac-ft per foot of lift

System	Eff. _A
Gravity	0.70
Drip & SDI	0.90
Micro-sprinkler	0.80
Sprinkler	0.75

Surface Irr: 130 ac x 5.7 ac-ft x 161 ft x 0.022 MCF/ac-ft = 2,624 MCF DI = 130 ac x 4.4 ac-ft x 196 ft x 0.022 MCF/ac-ft = 2,466 MCF Difference in fuel amount = 2,624 - 2,466 = 158 MCF Price of Natural Gas = \$3.39 per MCF Total saving = 158 MCF x \$3.39/MCF = \$535.6

THANK YOU!

